Code No. 12012

FACULTY OF MANAGEMENT

131218672061

M.B.A. III – Semester (CBCS) Examination, December 2019

Subject: Operations Research

Paper - MB - 303

Time: 3 Hours

Max.Marks: 80

Note: Answer all the questions from Part-A and Part-B. Each question carries 4 marks in Part-A and 12 marks in Part-B.

> PART – A (5x4 = 20 Marks) [Short Answer Type]

Note: Answer all the questions in not more than one page each.

- 1 Modelling in OR
- 2 Slack Variable
- 3 Degeneracy in Transportation Problem
- 4 Burst Event
- 5 Reneging

PART – B (5x12 = 60 Marks) [Essay Answer Type]

Note: Answer all the questions by using internal choice in not exceeding 4 pages each.

6 a) What is Operations Research? Explain briefly its applications.

OR

- b) Solve the following graphically: Max Z = $5x_1 + 3\dot{x}_2$ Subject to Constraints: $2x_1 + x_2 \le 1000$ $x_1 \le 400$ $x_2 \le 700$ $x_1, x_2 \ge 0$
- 7 a) What is Linear Programming? What are the assumptions in formulating Linear Programming Problem? What are the major Limitations? **OR**
 - b) Use Dual and solve the following: Min Z = $40x_1 + 200x_2$ Subject to Constraints: $4x_1 + 40x_2 \ge 160$ $3x_1 + 10x_2 \le 60$ $8x_1 + 10x_2 \ge 80$ $x_1, x_2 \ge 0$

8 a) Explain the North West Corner method of solving a transportation problem.

OR

-2-

b) Solve the following Assignment Problem and find the optimal solution.

		Machines				
		M ₁	M ₂	M_3	M_4	
Jobs	J ₁	5	7	11	6	
	J ₂	8	5	9	6	
	J ₃	4	7	10	7	
	J ₄	10	4	8	3	
2.1	7	1. 97 ¹ 1	1			

9 a) Explain the term crashing and resource leveling in network analysis.

-	-
(1
v	IN.
	0

b) The characteristics of a project schedule are given below:

A	Time	A	Time
Activity	(Days)	Activity	(Days)
1-2	4	5-6	4
1-3	1	5-7	8
2-4	1	6-8	1
3-4	1	7-8	2
3-5	6	8-10	5
4-9	5	9-10	7

1) Draw the Network

2) Compute the Earliest and Latest Times

3) Compute the Total Float and Free Float.

10 a) Explain the following:

i) Saddle Point

ii) Dominance Principle

OR

b) Students arrive at the head office of Universal Teacher Publications according to a Poisson input process with a mean rate of 40 per hour. The time required to serve a student has an exponential distribution with a mean of 50 per hour. Assume that the students are served by a single individual; find

1) The average waiting time of a student

2) What would be the average queue length?

3) What would be the average number of customers in the queuing system?