FACULTY OF MANAGEMENT

M.B.A. III - Semester (CBCS) Examination, December 2019

Subject: Operations Research
Paper - MB - 303
Max. Marks: 80
Time: 3 Hours
Note: Answer all the questions from Part-A and Part-B. Each question carries 4 marks in Part-A and 12 marks in Part-B.

$$
\text { PART - A (5x4 = } 20 \text { Marks) }
$$

[Short Answer Type]
Note: Answer all the questions in not more than one page each.
1 Modelling in OR
2 Slack Variable
3 Degeneracy in Transportation Problem
4 Burst Event
5 Reneging

> PART $-B(5 \times 12=60$ Mains $)$
> $[$ Essay Answer Type]

Note: Answer all the questions by using internal choice in not exceeding 4 pages each.
6 a) What is Operations Research? Explain briefly its applications.
OR
b) Solve the following graphically:

$$
\operatorname{Max} Z=5 x_{1}+3 \dot{x}_{2}
$$

Subject to Constraints: $2 x_{1}+x_{2} \leq 1000$

$$
\begin{aligned}
x_{1} & \leq 400 \\
x_{2} & \leq 700 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

7 a) What is Linear Programming? What are the assumptions in formulating Linear Programming Problem? What are the major Limitations?

OR
b) Use Dual and solve the following:
$\operatorname{Min} Z=40 x_{1}+200 x_{2}$
Subject to Constraints: $4 x_{1}+40 x_{2} \geq 160$
$3 x_{1}+10 x_{2} \leq 60$
$8 x_{1}+10 x_{2} \geq 80$
$x_{1}, x_{2} \geq 0$
8 a) Explain the North West Corner method of solving a transportation problem.
b) Solve the following Assignment Problem and find the optimal solution.

	Machines				
	M_{1}	M_{2}	M_{3}	M_{4}	
	J_{1}	5	7	11	6
	O_{2}	6			

9 a) Explain the term crashing and resource leveling in network analysis.
OR
b) The characteristics of a project schedule are given below:

Activity	Time (Days)	Activity	Time (Days)
$1-2$	4	$5-6$	4
$1-3$	1	$5-7$	8
$2-4$	1	$6-8$	1
$3-4$	1	$7-8$	2
$3-5$	6	$8-10$	5
$4-9$	5	$9-10$	7

1) Draw the Network
2) Compute the Earliest and Latest 7imes
3) Compute the Total Float and Free Float.

10 a) Explain the following:
i) Saddle Point
ii) Dominance Principle

OR
b) Students arrive at the head office of Universal Teacher Publications according to a Poisson input process with a mean rate of 40 per hour. The time required to serve a student has an exponential distribution with a mean of 50 per hour. Assume that the students are served by a single individual; find

1) The average waiting time of a student
2) What would be the average queue length?
3) What would be the average number of customers in the queuing system?
